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Abstract. The extractions of the CP-conserving and CP-violating form factors of the decays of the long-
lived kaon KL and the short-lived kaon KS into two photons from the branching ratios of KS,L → γγ and
KS,L → γγ → l−l+l−l+,where l represents either an electron or a muon, are described. Using the currently
available measurements of the branching ratios of KL → γγ and KL → e−e+e−e+ and assuming that
the form factors are constants, the ratio of the CP-violating decay rate to the CP-conserving decay rate
for KL → γγ is calculated to be 2.51% and the predicted branching ratio for KL → γγ → µ−µ+µ−µ+ is
6.07 × 10−13. For KS → γγ, a measurement of the branching ratio of KS → γγ → e−e+e−e+ is needed
to determine the ratio of the CP-violating decay rate to the CP-conserving decay rate and to accurately
predict the branching ratio of KS → γγ → µ−µ+µ−µ+. In the limit of complete CP-conservation the
branching ratios are evaluated to be 4.39 × 10−10 for KS → γγ → e−e+e−e+ and 6.96 × 10−15 for
KS → γγ → µ−µ+µ−µ+. In a similar model where the form factors of π0γγ vertex are constants, the
CP-violating decay rate component in π0 → γγ is shown, based on current available experimental data,
to be less than 1% of the total decay rate.The magnitudes of the form factors are obtained by correlating
the processes π0 → γγ and π0 → γγ → e−e+e−e+.

1 Introduction

This paper describes how the CP-conserving and CP-
violating form factors in the decays of the long-lived kaon
KL and the short-lived kaon KS into two photons can be
extracted from the branching ratios of the decays of KL

andKS into two identical lepton pairs (l−l+ ; l−l+) via the
double internal conversions in KS,L → γγ → l−l+l−l+.
The electron pairs can either be electrons (e−e+;
e−e+) or muons (µ−µ+ ; µ−µ+).We will use K to rep-
resent either KL or KS in discussions that are germane to
both of them.

This work also discusses the angular asymmetry func-
tion ∆(K → γγ → l−l+l−l+) which reveals the degree
of CP violation in K → γγ. The asymmetry function ∆
depends on the angle φ which is the angle between the
two planes of the lepton pairs, as shown in Fig. 1.

Although in an earlier paper [1], the author had dis-
cussed how the process K → γγ → e−e+µ−µ+ can be
utilized to achieve the same purpose, this paper has the
advantage of using the existing measured values of the
branching ratio (BR) of KL → e−e+e−e+ [2,3,4] to illus-
trate the extraction which enables the prediction of the
branching ratio of KL → γγ → µ−µ+µ−µ+. In anticipa-
tion of the future measurements [5] of the branching ra-
tios BR(KS → e−e+e−e+) and BR(KS → µ−µ+µ−µ+),
the computations necessary to obtain the form factors of

Fig. 1. The planes of the two pairs of leptons (l−l+; l−l+) and
the angle φ between the planes. The vectors n1 and n2 are the
normals to the planes

KS → γγ and the corresponding asymmetry functions are
also presented.

The decay mode π0 → γγ has played an important role
in establishing the existence of the triangular axial anoma-
lies introduced by fermion loops which subsequently led
to the conclusion that the quarks must come in three col-
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Fig. 2. Feynman diagrams for the process K → γγ →
l−l+l−l+ where K is either the short-lived kaon KS or the
long-lived kaon KL . The lepton l is either an electron or a
muon

ors for the anomalies to cancel [6 - 9]. In this paper, we
also deal with determining how much is the CP-violation
content in the process π0 → γγ by correlating it with the
double Dalitz mode π0 → γγ → e−e+e−e+. The approach
here is similar to the technique used by the author in the
case of the neutral kaons KL and KS . The only pub-
lished measurement of the rate of π0 → e−e+e−e+ was
performed by Samios et al. in 1962 [10]. There is a pre-
liminary result announced by Fermilab’s KTeV group in
1998 [11] and the analysis of the KTeV data taken during
1999 is in progress [12].

The discussion and analysis for the neutral kaons will
be presented first followed by a similar exposition for the
neutral pion.

In this paper, we emphasize that BR means branching
ratio relative to the total decay rate.

2 Form factors of K → γγ and asymmetry
function of K → γγ → l−l+l−l+

One considers the Feynman graphs in Fig. 2 for the K →
γγ → l−l+l−l+ decay process. Q1, Q2, Q3, and Q4 are
the momenta of the leptons. MK and m are the masses
of the kaon and the lepton, respectively. The momenta of
the two photons are k1 and k2. The QED coupling ie is
assumed for the γl−l+ vertex. For the Kγγ vertex, it is
assumed that the phenomenological Lagrangian [13,14]

L =
iH

4MK
Φεµναβ FµνFαβ +

iG

4MK
ΦFµνFµν (1)

holds. Φ is the meson field and Fµν = ∂µAν − ∂νAµ,
where Aµ is the photon field. Both H and G are dimen-
sionless form factors that parametrize the dynamics of the
Kγγ vertex. These form factors are, in general, dependent
on the momenta of the two photons. Dynamical models
where the Kγγ vertex is momentum dependent have been
proposed [15-22]. In particular, most of the analyses on
K

L
γγ vertex are geared toward elucidating the extent of

the long-distance contribution of the 2γ intermediate state
to the process KL → µ−µ+, a decay mode which probes
second order processes in the Standard Model [23,24]. In
this paper, it will be assumed that the momentum depen-
dence can be neglected within the range of the energy that

is involved:

H(k2
1, k

2
2) ≈ H(0, 0) (2)

G(k2
1, k

2
2) ≈ G(0, 0)

for

0 ≤ −k2
1 ≤ (MK − 2m)2 (3)

0 ≤ −k2
2 ≤ (MK − 2m)2 .

This assumption possibly does constrain the accuracy
of the predictions of the model and the rendered computa-
tions. However, the magnitude of the potential deviations
from the prospective results of more precise measurements
of the pertinent decay rates that could ensue from the as-
sumption can serve as a guide in constructing dynamical
models where the exact momentum dependence of these
form factors are delineated.

The invariant matrix element [25] is

M =M1+M2 (4)

where

M1 =
(−i e)2

(Q1 +Q2)2 (Q3 +Q4)2

(−2 i
MK

)
ū(Q1) γα v(Q2)[

H δαν εµνρσ(Q1 +Q2)µ (Q3 +Q4)ρ δσβ

+G (Q1 +Q2) · (Q3 +Q4) δαβ

]
ū(Q3)γβv(Q4) (5)

and

M2 =
(−i e)2

(Q1 +Q4)2 (Q3 +Q2)2

(−2 i
MK

)
ū(Q1) γα v(Q4)[

H δαν εµνρσ(Q1 +Q4)µ (Q3 +Q2)ρ δσβ

+G (Q1 +Q4) · (Q3 +Q2) δαβ

]
ū(Q3)γβv(Q2) (6)

Since the process is a four-body decay, five independent
variables are needed [26].The initially chosen variables are

x2 = −(Q1 +Q2)2

x3 = −(Q3 +Q4)2

y2 = −(Q1 +Q2 +Q4)2 (7)
y3 = −(Q1 +Q3 +Q4)2

w23 = −(Q2 +Q4)2 .

To simplify the expression for |M |2 , the square of the
absolute value of the invariant matrix element, we use the
generic functions λ(x, y, z, ) and η(x; y, z; u, v; w) where

λ(x, y, z) = x2 + y2 + z2 − 2x y − 2x z − 2 y z (8)
η(x; y, z; u, v; w] (9)

= −
[
x2 − x (y + z + u+ v − w) + (y − z) (u− v)

]
.

The following terms are also employed in the expression
for |M |2:
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s = (MK)2

z = m2

a0 = η(s; z, y3; z, y2; 8 z)
a2 = η(s; z, y2; x3, x2; 2 z)
a3 = η(s; z, y3; x2, x3; 2 z) (10)
b2 = λ(s, x2, x3) λ(y2, z, s) − (a2)2

b3 = λ(s, x3, x2) λ(y3, z, s) − (a3)2

a = [a2 a3 − λ(s, x2, x3) a0] / [2 s λ(s, x2, x3)]

b =
√
b2 b3 / [2 s λ(s, x2, x3)]

σ = λ(s, x2, x3) b2/16 .

In the rest frame of the kaon, it can be shown [26] that
w23 is linearly related to φ, the angle between the plane
determined by Q1and Q2 and the plane spanned by Q3
and Q4:

w23 = a+ b cosφ (11)

We can therefore use the variables x2, x3, y2, y3, and φ as
the five independent variables in the final expression for〈|M|2〉, the |M|2 summed over all the spin states.

The differential decay width, expressed in terms of the
variables x2, x3, y2, y3, and φ, is

dΓ =
1

(128) (2π)6 s
√
s
√
λ(s, x2, x3) 2! 2!

× 〈|M |2〉 dx2 dx3 dy2 dy3 dφ (12)

where

〈 |M |2〉 = 2
(

2 e2

MK

)2 [
|H|2 A(x2, x3, y2, y3, φ)

+|G|2 B(x2, x3, y2, y3, φ)

+ Im(H G∗)C(x2, x3, y2, y3, φ)
]

(13)

and

A(x2, x3, y2, y3, φ)

=
{
2λ(s, x2, x3)

[
2 z (x2 + x3) − x2 x3

]
+4 (16)σ sin2 φ − 8 (x2 x3)2

+4x2 x3

[
(y2 + x3 − s− z) (y2 − x2 − z)

+(y3 + x2 − s− z) (y3 − x3 − z)

+(x2 + x3 − s)2
] } [

(x2 x3)2
√
λ(s, x2, x3)

]−1
(14)

B(x2, x3, y2, y3, φ)

= 2 (x2 + x3 − s)2
[
2 z (x2 + x3)

+(y2 + y3 − s− a− b cosφ) (2 z − a− b cosφ)

+(x2 − y2 − z + a+ b cosφ) (x3 − y3 − z + a+ b cosφ)
]

×
[
(x2 x3)2

√
λ(s, x2, x3)

]−1
(15)

C(x2, x3, y2, y3, φ)

= 8 (x2 + x3 − s)
[
x2 + x3 + s− 2 y2 − 2 y3 − 4 z

+4 (a+ b cosφ)
]
(
√
σ sinφ)

[
(x2 x3)2

√
λ(s, x2, x3)

]−1

+8
{
4 z +

1
2

[
2 z + y2 + y3 − s− 2 (a+ b cosφ)

] }
×

{
6 z + y2 + y3 − 2x2 − 2x3 − 2 (a+ b cosφ)

}
× (√

σ sinφ
) [

(x2 x3) (3 z + y3 − x3 − a− b cosφ)

· (3 z + y2 − x2 − a− b cosφ)
√
λ(s, x2, x3)

]−1
. (16)

To obtain the angular spectrum distribution dΓ
dφ , the

variables y3, y2, x3, and x2 are integrated out, in that
order, with the following limits of integration [26]:

y
(±)
2 =

{
η(x3; z, z; s, x2; 0)

±
[
λ(x3, z, z)λ(x3, s, x2)

] 1
2

} /
(2x3)

y
(±)
3 =

{
η(x2; z, z; s, x3; 0)

±
[
λ(x2, z, z)λ(x2, s, x3)

] 1
2

} /
(2x2)

x
(−)
3 = 4 z (17)

x
(+)
3 = (

√
s− √

x2)2

x
(−)
2 = 4 z

x
(+)
2 = (

√
s− 2

√
z)2 .

Henceforth, any integration with respect to any of the
variables x2, x3, y2, and y3 is understood to be subject to
the above limits of integration.

Designating the integrals of A, B, and C with respect
to x2, x3, y2, and y3 as α(φ), β(φ), and γ(φ) respectively,

α(φ) =
∫ ∫ ∫ ∫

dx2 dx3 dy2 dy3 A(x2, x3, y2, y3, φ) (18)

β(φ) =
∫ ∫ ∫ ∫

dx2 dx3 dy2 dy3 B(x2, x3, y2, y3, φ) (19)

γ(φ) =
∫ ∫ ∫ ∫

dx2 dx3 dy2 dy3 C(x2, x3, y2, y3, φ) (20)

we can rewrite (12) as

dΓ

dφ
= F

[
|H |2 α(φ) + |G |2 β(φ) + Im(H G∗) γ(φ)

]
(21)

where

F =
(

2
128

) (
1
2π

)6
e4

M 5
K

. (22)

The integrals of α(φ) and β(φ) with respect to φ are
needed to get the decay rate Γ (K → γγ → l−l+l−l+).
The integral of γ(φ) with respect to φ is zero. Note also
that because γ(φ) is an odd function of φ,

γ(φ) − γ(−φ) = 2 γ(φ) (23)
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Letting

p = F

∫ 2 π

0
dφα(φ) (24)

q = F

∫ 2 π

0
dφβ(φ) (25)

and using these expressions in (21), we obtain

Γ (K → γγ → l−l+l−l+) = p |H |2 + q |G |2 . (26)

From the Lagrangian in (1) , the decay rate of K → γγ
is

Γ (K → γγ) =
MK

16π
(|H |2 + 2 |G |2) . (27)

For KL, H is the CP-conserving form factor and G is the
CP-violating one; whereas for KS , G is the CP-conserving
form factor and H is the CP-violating one.

Defining the asymmetry function ∆(K → γγ → l−l+
l−l+) as

∆(K → γγ → l−l+l−l+)

=
[
dΓ

dφ
(φ) − dΓ

dφ
(−φ)

]
[Γ (K → γγ)]−1 , (28)

we see that it gauges the asymmetry of the angular decay
spectrum with respect to φ = 0. Using (21) and (27) in
the right hand side of (28), we obtain

∆(K → γγ → l−l+l−l+) (29)

= [2F Im (H G∗) γ(φ)]
[(

MK

16π

) (|H |2 + 2 |G |2 )]−1

.

We would like to express (26), (27), and (29) in terms
of the moduli and relative phase difference of H and G.
Letting

H = h exp[i ψh]
G = g exp[i ψg] (30)
δ = (ψg − ψh) ,

(26) and (27) become

Γ (K → γγ → l−l+l−l+) = p h2 + q g2 (31)

Γ (K → γγ) =
MK

16π
(h2 + 2 g2) (32)

so that the branching ratio of K → γγ → l−l+l−l+ is

BR(K → γγ → l−l+l−l+)

=
Γ (K → γγ → l−l+l−l+)

Γ (K → γγ)
·BR(K → γγ) (33)

= (p h2 + q g2)
[
MK

16π
(h2 + 2 g2)

]−1

BR(K → γγ) .

From (31) and (32), we can solve for h2 and g2; this leads
to the following results:

h2 =

[
q BR(K → γγ) − 2

(
MK

16π

)

×BR(K → γγ → l−l+l−l+)

]

× [Γ (K → all)]
[
MK

16π
(q − 2 p)

]−1

(34)

and

g2 = −
[
pBR(K → γγ) −

(
MK

16π

)

×BR(K → γγl−l+l−l+)

]

× [Γ (K → all)]
[
MK

16π
(q − 2 p)

]−1

. (35)

Meanwhile, the asymmetry function of (29) becomes

∆(K → γγ → l−l+l−l+)

= −2F
(

16 π
MK

) (
h g sin δ
h2 + 2 g2

)
γ(φ) . (36)

In (34) and (35), the values of p, q, and the coeffi-
cients of sinφ and sinφ cosφ in γ(φ) can be computed for
both the electronic mode and the muonic mode. The au-
thor has used the software Mathematica[27] to carry out
the symbolic and numerical computations for them; the
results are in Table I.Using the tabulated values, we have
for the electronic mode,

h2 =
[
15.656 × 10−2 BR(K → γγ)

−8.800 × 102BR(K → γγ → e−e+e−e+)
]

×Γ (K → all) (MeV )−1 (37)

g2 = −
[
2.778 × 10−2 BR(K → γγ)

−4.440 × 102BR(K → γγ → e−e+e−e+)
]

×Γ (K → all) (MeV )−1 (38)

∆(K → γγ → e−e+e−e+)

=
h g sin δ

(h2 + 2 g2)
[1.639 sinφ+ 0.0026 sinφ cosφ]

×10−5(rad)−1 (39)

and for the muonic mode,

h2 =
[
15.656 × 10−2BR(K → γγ)

−5.604 × 107BR(K → γγ → µ−µ+µ−µ+)
]

×Γ (K → all) (MeV )−1 (40)

g2 = −
[
2.778 × 10−2BR(K → γγ)

−2.802 × 107BR(K → γγ → µ−µ+µ−µ+)
]

×Γ (K → all) (MeV )−1 (41)
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∆(K → γγ → µ−µ+µ−µ+)

=
h g sin δ

(h2 + 2 g2)
[6.414 sinφ+ 0.2134 sinφ cosφ]

×10−12(rad)−1 . (42)

3 Analysis for the neutral kaons

For KL, the Particle Data Group [2] lists the branching
ratios

BR(KL → γγ) = (5.86 ± 0.15) × 10−4 (PDG)
BR(KL → e−e+e−e+) = (4.1 ± 0.8) × 10−8 . (PDG)

More recent values have been presented by Fermilab’s
KTeV/E799 group [3] and CERN’s NA48 group [4]:

BR(KL → e−e+e−e+)
= (3.72 ± 0.18 ± 0.23) × 10−8 (KteV)

BR(KL → e−e+e−e+)
= (3.67 ± 0.32 ± 0.23 ± 0.08) × 10−8 . (NA48)

Using the values BR(KL → γγ) = 5.86 × 10−4 and
BR(KL → e−e+e−e+) = 3.83 × 10−8, which is the av-
erage of the values given by PDG [2], KTeV [3] and NA48
[4], we obtain the following from (37) and (38):

h2 = 73.501 × 10−20 (43)
g2 = 0.9205 × 10−20 (44)

so that the ratio of the CP-violating rate to the CP-
conserving rate in KL → γγ is

2 g2

h2 = 2.51% . (45)

This amount of CP-violation is smaller than the CP-
violating asymmetry of 13.6% detected by the KTeV’s
experiment on KL → π+π−e+e− [28]. The asymmetry
function is

∆(KL → γγ → e−e+e−e+)
= sin δL [0.018 sinφ+ 1.774 sinφ cosφ]

×10−6 (rad)−1 . (46)

Using the values of h2 and g2 from (43) and (44), and
the values of p and q for the muonic mode in Table I, one
can predict from (31) the branching ratio of KL → γγ →
µ−µ+µ−µ+:

BR(KL → γγ → µ−µ+µ−µ+) = 6.07 × 10−13 . (47)

Miyazaki and Takasugi [29] predicted the above branching
ratio to be 5.54 × 10−13, whereas Zhang and Goity [30],
who employed chiral perturbation theory, predicted it to
be 8 × 10−13. The corresponding asymmetry function is

∆(KL → γγ → µ−µ+µ−µ+)
= sin δL [6.30 × 10−4 sinφ+ 7.232 sinφ cosφ]

×10−13(rad)−1 . (48)

Fig. 3. The plot of ∆(KL → γγ → e−e+e−e+) for sin δL = 1.
The maximum is at φ = 0.7890 radian , slightly to the right of
π/4 = 0.7854; the minimum is at φ = 2.3598 radian, slightly
to the right of 3π/4 = 2.3562

Fig. 4. The plot of ∆(KL → γγ → µ−µ+µ−µ+) for sin δL =
1.The maximum is at φ = 0.7854 radian ; the minimum is at
φ = 2.3562

Fig. 5. The plot of ∆(π0 → γγ → e−e+e−e+) for sin δπ = 1.
The maximum is at φ = 0.793 radian , slightly to the right
of π/4 = 0.785 radian ; the minimum is at φ = 2.363 radian,
slightly to the right of 3π/4 = 2.356 radian

The plots of∆(KL → γγ → e−e+e−e+) and ∆(KL →
γγ → µ−µ+µ−µ+), with sin δL = 1, are shown in Fig. 3
and Fig. 4 respectively. The maximum of ∆(KL → γγ →
e−e+e−e+) is 0.8998 × 10−6 rad−1 at φ = 0.7890 rad,
slightly skewed to the right of φ = π/4 = 0.7854 rad , while
the minimum is − 0.8743×10−6 rad−1 at φ = 2.3598 rad ,
slightly shifted to the right of φ = 3π/4 = 2.3562 rad . For
∆(KL → γγ → µ−µ+µ−µ+), the maximum is 3.6164 ×
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10−13(rad)−1 which occurs at φ = 0.7854 rad, while the
minimum is −3.6156 × 10−13 at φ = 2.3562 rad.

In the case of the short-lived kaon KS , the values of
the branching ratio BR(KS → γγ) listed by the Particle
Data Group [2] and reported recently by NA48 [31] are

BR(KS → γγ) = (2.4 ± 0.9) × 10−6 (PDG)
BR(KS → γγ) = (2.58 ± 0.36 ± 0.22) × 10−6 (NA48)

yielding an average of (2.49 ± 0.74) × 10−6 . However, to
date, there are no reported measurements of BR(KS →
e−e+e−e+) and BR(KS → µ−µ+µ−µ+) so that we are
unable to use (37) and (38) to extract the values of h2

and g2. The asymmetry function can be obtained from
(39) and (42).

We can also establish the following ranges by imposing
h2 ≥ 0 and g2 ≥ 0 in (37), (38), (40), and (41):

0.626 × 10−4 BR(KS → γγ)
≤ BR(KS → γγ → e−e+e−e+)
≤ 1.76 × 10−4 BR(KS → γγ) (49)

0.992 × 10−9 BR(KS → γγ)
≤ BR(KS → γγ → µ−µ+µ−µ+)
≤ 2.79 × 10−9 BR(KS → γγ) (50)

and using the average value of BR(KS → γγ) = 2.49 ×
10−6, we have

1.56 × 10−10 ≤ BR(KS → γγ → e−e+e−e+)
≤ 4.39 × 10−10 (51)

2.47 × 10−15 ≤ BR(KS → γγ → µ−µ+µ−µ+)
≤ 6.96 × 10−15 . (52)

In the limit when the CP-violating part is not present (h =
0), the average value of BR(KS → γγ), together with (37)
and (40), yields BR(KS → γγ → e−e+e−e+) = 4.39 ×
10−10 and BR(KS → γγ → µ−µ+µ−µ+) = 6.96 × 10−15.

4 Analysis for the neutral pion

The previous techniques can be applied to the process
π0 → γγ → e−e+e−e+ provided the kaon’s parameters
are replaced with those of the pion’s. BothH and G are di-
mensionless form factors that characterize the dynamics of
the π0γγ vertex; H is the CP-conserving form factor and
G is the CP-violating one.We likewise assume the they are
constants within the range of the energy involved. These
form factors are, in general, dependent on the meomenta
of the two photons. Chiral models where the π0γγ vertex
is discussed can be found in [6–9]. In particular, (34) and
(35) translate into

h2
π =

[
q BR(π0 → γγ) − 2

(
Mπ

16π

)

×BR(π0 → γγ → e−e+e−e+)
]

×[Γ (π0 → all)]
[
Mπ

16π
(q − 2 p)

]−1

(53)

and

g2
π = −

[
pBR(π0 → γγ) −

(
Mπ

16π

)

×BR(π0 → γγ → e−e+e−e+)
]

×[Γ (π0 → all)]
[
Mπ

16π
(q − 2 p)

]−1

(54)

from which we deduce that

p

(
16π
Mπ

)
BR(π0 → γγ)

≤ BR(π0 → γγ → e−e+e−e+)

≤ q

(
16π
2Mπ

)
BR(π0 → γγ) (55)

since h2
π ≥ 0 and g2

π ≥ 0 .
The numerical computations for the values of p, q,

and the coefficients of sinφ and sinφ cosφ in γ(φ) yield
the results

p = 9.28 × 10−5 MeV (56)
q = 192.78 × 10−5 MeV (57)

γ(φ) = − (0.0482 sinφ+ 2.346 sinφ cosφ)
×1014 MeV 6 rad−1 . (58)

The Particle Data Group [2] has listed the values BR(π0→
γγ) = (98.798 ± 0.032) × 10−2 and Γ (π0 → all) = (7.8 ±
0.6) × 10−6 MeV while the KTeV group [11] has released
the preliminary result BR(π0 → e−e+e−e+) = (3.27 ±
0.26) × 10−5. Using these data and the above results in
(55), we get

3.41×10−5 ≤ BR(π0 → γγ → e−e+e−e+) ≤ 35.46×10−5

(59)
where the lower limit corresponds to g2

π = 0, the case when
CP-violation is absent. This lower limit is within the range
of the preliminary results from KTeV and is higher than
the value 3.24×10−5 predicted by Miyazaki and Takasugi
[29]. From (53) and (54), we obtain

h2
π = 2.87 × 10−6 (60)
g2

π = 0.52 × 10−8 (61)
2 g2

π

h2
π + 2 g2

π

= 0.36 × 10−2 = 0.36% . (62)

This says the CP-violating rate of π0 → γγ is less than
1% of its total decay rate. The asymmetry function is

∆(π0 → γγ → e−e+e−e+) (63)
= sin δπ (0.034 sinφ+ 1.66 sinφ cosφ) × 10−7 rad−1

which has maximum at φ = 0.793 rad , at the right of
π/4 = 0.785 rad, and minimum at φ = 2.363 rad, at the
right of 3π/4 = 2.356 rad. Figure 5 shows the plot of ∆
against φ for sin δπ = 1.
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The same technique can be applied to correlate η → γγ
with η → γγ → e−e+e−e+ and η → γγ → µ−µ+µ−µ+;
the results in doing so are

2.55 × 10−5 ≤ BR(η → γγ → e−e+e−e+)
≤ 6.60 × 10−5 (64)

2.54 × 10−9 ≤ BR(η → γγ → µ−µ+µ−µ+)
≤ 6.56 × 10−9 (65)

where the lower limits refer to the case of no CP-violation
or g2

η = 0. These values are higher than the correspond-
ing values of 2.42 × 10−5 and 2.45 × 10−9 calculated by
Miyazaki and Takasugi [29] under the assumption of no
CP-violation.

The asymmetry functions are

∆(η → γγ → e−e+e−e+)

=
hη gη

(h2
η + 2 g2

η)
sin δη (0.009 sinφ+ 1.69 sinφ cosφ)

×10−5 rad−1 (66)

∆(η → γγ → µ−µ+µ−µ+)

=
hη gη

(h2
η + 2 g2

η)
sin δη (0.115 sinφ+ 8.32 sinφ cosφ)

×10−11 rad−1 . (67)

In the absence of measurements of the decay rates of ei-
ther η → e−e+e−e+ or η → µ−µ+µ−µ+, we are unable
to extract the values of h2

η and g2
η. Recently, Akhmetshin

et al.[32] has established an upper limit of BR(η → e−e+
e−e+) < 6.9 × 10−5 which is higher than the upper limit
in (64).

5 Conclusion

We have presented a modus with which the CP-conserving
and CP-violating form factors of KL → γγ and KS → γγ
can be garnered from the branching ratios BR(KS,L →
γγ) and BR(KS,L → γγ → l−l+l−l+) where l represents
either an electron or a muon. The manifestation of CP-
violation can also be detected by measuring the asymme-
try function ∆ in the decays KS,L → γγ → l−l+l−l+.
From the known values of BR(KL → γγ) and BR(KL →
e−e+e−e+), we deduced that the ratio of the CP-violating
part to the CP-conserving part inKL → γγ decay is 2.51%
and the branching ratio BR(KL → γγ → µ−µ+µ−µ+) is
6.07 × 10−13.

We await the future measurements [5] of the branching
ratio and asymmetry function ∆ of KS → e−e+e−e+ to
detect and gauge the degree of CP violation in KS → γγ.

In a similar model where the form factors of π0γγ ver-
tex are constants, the CP-violating decay rate in π0 → γγ
is shown, based on current available experimental data,
to be less than 1% of the total decay rate. A way of de-
tecting the presence of of CP violation in π0 → γγ and
η → γγ is to reconnoiter the double Dalitz modes π →
γγ → e−e+e−e+ and η → γγ → e−e+e−e+ or η → γγ →
µ−µ+µ−µ+ and measure their asymmetry functions.
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